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Abstract. We calculate the phonon-assisted hopping conductivity for a system of localised 
electronic states, using a current-current correlation function. A Green function equation- 
of-motion method has been applied. In doing the calculation we have established the general 
approximation one must make to the equations of motion and the model, in order to 
reproduce the random resistance network, regardless of whether one uses a position- 
position, a current-position, or a current-current correlation function. It is found that 
diagonal elements of position and electron-phonon interaction play equivalent roles and 
that it is insufficient to make an approximation neglecting all but diagonal position elements. 

1. Introduction 

Within the framework of linear response theory there are three equivalent forms which 
may be used for calculation of the electrical conductivity. The first arises from using an 
electric field as the perturbation and considers the response in the polarisation vector; 
this leads immediately to a position-position correlation function. The second uses an 
applied electric field and considers response in the current, leading to a current-position 
correlation function. The third form involves a current-current correlation and can be 
obtained from the above perturbation, or more naturally from a perturbation in the 
form of an applied vector potential. In terms of double time temperature-dependent 
Green functions (Zubarev 1960) the three forms when the perturbing field has a time 
dependence e'-'("' are 
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electronic charge and ( ) is a thermal average with respect to the full Hamiltonian in the 
absence of a perturbing field. The equation of motion for the Green function is 

W I B ) ) ,  = (1/24([A, BI) + ( ( [A,  HIIB)),. (1.5) 
Our interest here is in the conductivity associated with phonon-assisted hopping of 

the electrons between localised electronic states in disordered solids. We therefore 
express our operators in a number representation based on the set of localised 
wavefunctions U,(r) with A labelling different sites (details may be found in Barrie et a1 
(1987)) : 

hoUA(r) = [-(h2/2m)V2 + V(r)]U,(r) = elUI(r) (1 4 

B i I ,  = ig( &) 1'2 1 d 3 r  U ,  U,, exp(iq - r )  
2vph 

x = X*~'a;a, '  
AI' 

x I I ,  = 1 d 3r  U ,  U A r x  (1.11) 

U,),, = ( E ,  - &,.)/h. (1.12) 

The electron-phonon interaction is assumed small and is parametrised by g in equation 

We have chosen U, to be real in the above. These equations lead to the following 
(1.8). 

expressions for the conductivity, corresponding to equations (1.1)-( 1.3): 

(1.13) 

(1.14) 

The primary aim of this paper is to show that all three forms lead, under appropriate 
approximations, to the same resistor network model for the DC conductivity, when 
calculated to order g2 in the electron-phonon interaction. It transpires that this is not 
trivial and details are presented in 9 3. The first form has previously been used by 
Manucharyants and Zvyagin (1974) and the second by Barrie et a1 (1987). The third form 
is presented here, first for completeness and secondly as a test calculation for the thermal 
conductivity. We plan to present a calculation of the electronic contribution to the 
thermal conductivity, where one typically studies an energy current-energy current 
correlation. Having analysed the appropriate approximation and method of calculation 
for the third form of the electrical conductivity, it should then be possible to extend the 
results presented here to the case of the thermal conductivity. 
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Prior to looking at the DC and relatively high-frequency cases we first look at two 
limits where the three methods can very easily be written in exactly the same form. The 
first of these is the case where g ,  the small parameter of electron-phonon interaction, is 
zero and the second is for the extremely high-frequency limit. 

2. Special cases 

2.1. Caseofg = 0 

For illustrative purposes, let us first discuss the case of g = 0, for general frequency w.  
Equation (1.5) used for Gff,'(E) leads to 

G?f#'(E) = (1/2~d) [(fh -fn,)/(E + E A  - E A O I  d ~ , p 6 ~ p ,  (2.1) 

f A  = (a fad,=o.  

Then equation (1.13) gives 

where P stands for the principal part. We write 

and use the interchangeability of A. and A '  in the sum to show that the '1' does not 
contribute. This results in 

The second form for a(w), equation (1.14), leads to (2.4) directly. For the third form, 
equation (1.15), we use the fact that 

and combining this with the rest of the expression for a(w), we again reproduce equation 
(2.4). 

2.2. Extremely high-frequency approximation 

In hopping conductivity problems there are two frequency domains that could be 
described as 'high'. The limit we take in this section is the limit w S wAAt, for a typical 
pair of sites. In this case the electrons behave as if they were free. However a typical 
value of wAA, is 10l2 Hz, far above the frequency range considered as higb for an applied 
AC signal. As an electron hops from site A to site A ' ,  the surrounding electrons relax with 
a characteristic timescale t. In the high-frequency limit considered by Zvyagin (1980), 
the frequency range is such that t - l <  w 4 uAA,, 

In the case of very high frequency, we find from our equations (1.13) and (1.4) that 
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the first method gives 

+ (terms O(g2/o)n  with n 3 1) 

The second form, equation (1.14), again leads directly to equation (2.6). For the 
third form, equation (1.15), only the term involving ( [ j x , x ] )  remains, in the limit as 
o+ W. We find 

and on suitable interchanges of dummy variables A,  A '  and p one can show that this can 
be written in the form (2.6). 

Further interchanges of dummy variables allow us to write the common high- 
frequency limit as 

In this the thermal average is with respect to the full Hamiltonian in the absence of any 
perturbation. Let us now check that the general result 

( [ j x ,  x ] )  = -ihen/m (2.9) 

(n  is the number density of electrons) holds for this specific case of hopping conduction. 
We may write 

Thus our common high-frequency limit for all three approaches can be written in its 
usual form 

a(@) = ine2/mw. (2.11) 
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3. The Green function calculation 

3.1. Zntroduction 

Let us briefly outline our reasons for claiming that the derivation of the same DC resistor 
model from the three forms (1.13), (1.14) and (1.15) is not trivial. 

First, we note that the quadruple sum, in these equations, has to provide, in the first 
form, an 0 - l  divergence; in the second, an co-independent term; and in the third form, 
it has to produce a leading term proportional to U .  One could evaluate Gff f ’ (E)  from 
equation (1.5), making approximations in the process, then later perform the quadruple 
sum. This method proves to be rather unwieldy as it transpires that the approximations 
required to produce the resistor network (see 0 3.2) involve, in addition to quantities 
appearing in the G$f,’(E), also the coefficients in the sum. If one does solve (1.4) in the 
usual fashion by decoupling the hierarchy of equations stemming from it, one finds 

+ (terms involving Gff;,,, , all A” and A”’), (3.1) 
The &functions in the inhomogeneous term (the first three lines of equation (3.1)) 

partly control the terms important in the quadruple sum. However, the coefficients in 
the sums themselves also dictate which terms are important; we assume xAA % xhA, ,  
A # A’. Then in the first form the dominant Green function is Gff . In the second form, 
however, because of the presence of cohA,, the Green functions with A = A’ do not appear 
in the sum. In the third form, neither Gff’ nor Gf$ appear. The fact that whht changes 
sign on interchange of the indices A and A ’  also mean that terms vanishing in the sum on 
account of oddness on interchange of indices differ in the three methods. The particular 
Green functions that need to be evaluated in the appropriate framework of approxi- 
mations are different in the three forms. 

What we have done (cf. Manucharyants and Zvyagin 1974) is to introduce the Green 
function Ghh, = 2n((afa,, IS)) where S could be any operator (e.g. S = x for methods (i) 
and (ii)). The equation (1.5) for the Ghlt differs for different Sonly in the inhomogeneous 
term and is now in a convenient form to introduce the required approximations. This 
calculation has already been done for the first form (1.13) (Manucharyants and Zvyagin 
1974) and the second form (1.14) (Barrie et aZ1987) and has been shown to give the same 
result within the framework of a consistent set of approximations. We now present the 
calculation for the third form (1.15) and in doing so we expose the specific set of 
approximations required for all three calculations. 
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3.2. The Conductivity using the cCi,/jx) Green function 

Let us define the Green function GAL, 

= 2n((alah, / j x ) )  ( 3 4  
(S = j x ) .  Then the expression (1.3) for the conductivity can be written (note that for the 
sake of simplicity in the following equations, (3.2) differs from the standard Green 
function definition (1.4) by a factor 2n) as 

.(W) = -(e/wWjx,.1) - x wAA,xhA,GAA,. (3.3) 
Ah' 

Using equations (1.5) and (1.7) the equations of motion for GAh, are 

( E  + T W ~ ~ ~ ) G ~ ~ ~  = (ie/Q) 2 ( [a:aA, ,  a,+a,~])w, , ,x , , ,  
w' 

The equations (3.4) and (3.6) contain all information necessary to calculate the 
conductivity to orderg2. However, the hierarchical series has to be truncated at equation 
(3.8); for this we use the following standard decoupling: 

((a:ai+akalijx)) -- Gil(atak) + Gjk(a:al) - Gik(a ta l )  - Gil(a:ak) 

((ah+aA,b:,fb, l jx ) )  = NqGAA,aq+,? 

(3.9) 
(3. loa) 

((u$uA~bq~b?,Ijx)) = ( N ,  + 1)GAA,aq+,!. 
In addition we have to decouple some correlation functions 

(3. lob) 

(3.11) 

(3.12a) 

(3.12b) 

(3.13) 

The diagonal two-point electron corelation function evaluated at g = 0 is 

(a iaA)o =fh = [hexp(PEn) + I]-'. (3.14) 

(The factor 1 is because only one electron of either spin-up or spin-down is allowed on 
each site.) 

To find a tractable solution for the conductivity, to order gz, and to make contact 
with the results given by the rate-equation approach (see review by Overhof (1976) and 
references therein), as distinct from the Green function approach, we make a further 
approximation. This is what we will refer to as the two-site approximation. After 
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decoupling we have a truncated hierarchy of equations (3.4), (3.5) and (3.6) which now 
constitute a set of equations for the G and H Green functions. On the right-hand sides 
of these equations we neglect all terms that involve three or more different sites. We are 
not restricting ourselves to only two sites; all the sites still appear in the equations but 
they now appear only in pairs; e.g. in (3.6) we put 

c, ([a;a,b,, U,’U,,]> = ([a;a,b,, a;a, + a;a, + anfa, + anfa,]) (3.15) 
w‘ 

for this particular m and n. 

the result, valid within the framework of our approximations, that 
To show now that all three forms produce the same resistor network model we use 

(3.16) B;& - X A , )  = (B;  - B;,)xAA, 
(from now on we will abbreviate all diagonal elements by giving a single index: B;A = 

Now that the approximations have been stated one does a standard Green function 
B:, GAA = GA). 

calculation (see Appendix) to arrive at the result 

4o) = +(e2/2W c, (XA - xAf)WlA’fA(l -fn,)gnn, (3.17) 
AA’ 

with 

WAA, = (2n/h) c, lB;*, 12[(N, + l)d(E* - &A’ - hw,) 
I 

+ N,d(&A - E l ’  + f iw,)] 
and 

(3.18) 

(3.19) 

With considerable, straightforward, but tedious algebra one can calculate the fol- 
lowing set of simultaneous equations for the diagonal Green functions 

UGA = -i(-iew) c, WAPfA(l -fP)gAP. (3.20) 

The‘voltages’intheresistornetwork,gAAt (equation (3.19)), differfromthoseinmethods 
(i) and (ii) (see equation (2.23) of Barrie et a1 (1987)) because of the factor (-ieo) pre- 
multiplying the homogeneous part. However, the equations (3.20) are just (-ieo) times 
the equivalent set in methods (i) and (ii) (equations (2.25) of Barrie et a1 (1987)). Hence 
at every stage of the subsequent iteration, equation (3.19) gives the same result for a (w)  
and the same resistor network model as methods (i) and (ii). 

In this paper we have illustrated that the two-site approximation is a model-depen- 
dent, not a method-dependent, approximation and that making it leads one to the O(g2) 
resistor network irrespective of the path one takes. The relation (3.16), valid within the 
two-site approximation (Barrie et a1 1987), provides the connecting links between the 
three methods. In the first method, based on expression (1.13) for the conductivity, the 
leading contributions to the quadruple sum have two diagonal position matrix elements 
and the inhomogeneous parts of the equations for the required Green functions then 
contain, in the two-site approximation, two off-diagonal matrix elements of the electron- 
phonon interaction. The second method, based on (1.14), has one off-diagonal and one 
diagonal matrix element of both position and electron-phonon interaction occurring in 
each of the leading terms, while the third method, presented here, has only off-diagonal 
elements of position and diagonal elements of electron-phonon interaction. In methods 

P 
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(ii) and (iii), neglect of the diagonal electron-phonon interaction matrix elements (as 
suggested by Zvyagin 1980) would clearly be wrong. 

If, in the w + 0 limit, the terms O(g2/w)' in (3.17) can be rearranged to give a g- 
independent contribution to the 'voltages', the expression for a(w)  can be evaluated 
using the random resistance network model (Miller and Abrahams 1960). However, this 
point is currently under some debate (Barker 1976, Capek 1987). Physically these terms 
correspond to a relaxation SfA of the site occupation functions, due to the electric field 
(Manucharyants and Zvyagin 1974). 

For finite o (w % z-l, but w 6 wAAf)  then the terms O(g2/w)' are not singular and 
the diagonal Green functions give a contribution O(g4) to (3.17). This corresponds to 
the high-frequency limit cited by Manucharyants and Zvyagin (1974). Physically the 
electric field changes direction too fast for the system to equilibrate. The high-frequency 
expression is 

a(w> = ( e 2 B / 2 Q )  (xn - x h , ) 2 ~ A L , f k ( l  -fA,>. (3.21) 
Ah' 

4. Conclusions 

In this paper we have calculated the conductivity of a system of electrons in localised 
electronic states, with phonon-assisted hopping. We have used a method involving the 
jX--jX correlation function and obtained the same resistor network as the method involving 
x-x and that involving jX-x. At first sight the method is an unlikely one to use for 
hopping conductivity because the equations involve only off-diagonal position elements. 
However, it is important for two reasons: it shows the resistor network model to be 
dependent only on a specific set of approximations, not on the particular form of the 
starting expression. Secondly, it can be looked upon as a test calculation for the thermal 
conductivity. In this calculation the natural approach would be to calculate the Green 
function ((j: ij:)) wherejE is the energy current operator. The work presented here will 
shed some light on the thermal conductivity problem. 
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Appendix. Evaluation of Green functions 

In this appendix we present the tedious, but important, algebraic details involved in 
the evaluation of the required Green functions. With the stated approximations, the 
equations are now, for the off-diagonal Green functions, 

( E  + h w A A , ) ~ i A ,  = -(ie/Q)oAht(aiaA - a$al,,)xhA, - (B? - B ? < )  
4 

x (H&, - Hf,*A') + E B;f,,[(H,, - H+,A) - (HiA, - H+,h,)I 

EGA = C B?p[(H& - H f _ q h p )  - (&A - H T ~ ~ A ) I +  

(AI)  
4 

and for the diagonal ones 

(A21 
4P 
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The decoupled equations for the H Green functions are 

ie 
Q 

(HiAA, - H?,AA,) = - W A A , X ~ A ,  

We wish to find the conductivity in the first high-frequency ( C1 4 w 4 wnn, )  and DC 
limits, hence we put (A3) into (Al) and expand to first order in w ,  as we are well away 
from the poles of w + wAAl for a typical applied frequency ( E  = Ziw + ie). 

The diagonal second-order Green functions shown above (A4) give no contribution 
to the conductivity to O(g2) and order w .  If one substitutes the O(go) expression for GdAr 
and GAcA then each term is either exactly zero or has a symmetry on exchange of A and 
A '  such that it sums to zero in the final expression (3.3).  (Unless one finds an 0 - l  

divergence in dealing with the terms involving diagonal Green functions in equations 
(Al)-(A4), they contribute to O(g4) and so can be neglected. This is the case above for 
the contributing terms. This point is discussed further in the text). Thus 

Gnnf = -(iexAnf/Qh) (1 - w / w A n f ) ( a ~ a n  - u;uA,)  + DAA, + ZAA, + FAA, (A5) 
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(A81 
N ,  + 1 - f A  ( . E + ~ ~ A ~ k h w ,  + E + ~ O ~ . ~ ,  + h w ,  

In going from (Al) to (A5) we moved the terms in GAL, from the RHS to the LHS, giving 
a mass operator of O(g2). The LHS of (Al) then becomes ( E  + hwhdj + M A A J ) G ~ ~ ~ r .  
Multiplying LHS and RHS by ( E  + hcoAA, + and expanding to first order in g2 and 
w we arrive at (A5), with the term DJ,A, coming from the mass operator MAL, .  If we 
evaluate this term to order w we find 

-inSh(N, + l)N,(B;q - B C ~ ) [ ~ ( E ~  - - hw,) 

- 6 ( E A  - EA'  + hw,)] . G49) 1 

h w +  WAA' l 1  3 w q  

The analytic and singular parts have been separated in the w-dependent term above 
using the identity (Zubarev 1960) 

- in6(hw + - T hw,). 
( A W  

(Al l )  

1 = -P( 1 
ti(cc, + i& + w A A ,  

In addition we have used identities of the form 

0,) 

N,G(hcc, + EA - EA, - hw,) = [ N ,  - pnwN,(N,  + 1)]8(&), - EA' - hw,). 

Next let us look at the inhomogeneous term ZAAt. This is evaluated by expanding the 
density matrix, using the standard formula 

exp(-PH) = exp(-PHo) 2 l d U l  . . . UpHel-ph(UI). . . H"-ph(Up) 
?: 

p = o  

f o r p  > U 1  > . . . > U p  (A121 
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(A13a) 

(A13b) 

H"-ph(U) = exp( - UH,)We'-ph exp(UHo). (-414) 

Expanding to first order in Hel-ph and using the decoupling (3.11)-(3.12) we find 

Then, using the two-site approximation, IAAt is, to order g2 and order 

(A15a) 

(A15b) 

Finally we have to deal with the homogeneous term FAA,. For this we are only 
interested in the contribution that diverges as w- l .  This point is discussed in more detail 
in the text; let it suffice at present to say that the analytic contribution to FAA, is of order 
g4 and can be neglected. Thus we are able to set w = 0 in calculating FA),,. After some 
algebra FAA, can be written 
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Equalities of the form 

( N ,  + 1 -f*J)s(&, - .?A, - no,) = - - f A , )  ( N ,  + l)b(&* - &A, - hw,) (A181 (1 - f n >  
have been used in equation (A17). 

Now, with equations (A9), (A16) and (A17) we have an expression for GAAl (equation 
(A.5)) which we can use in equation (3.3) for the conductivity. The analytic terms in 
these expressions disappear in the final equation (3.3) for a(w)  because of the symmetry 
on interchange of A and A'. Singular terms of order w ,  one from (A9) and one from 
(A16) cancel each other because 

and the final expression for the conductivity is 

with WAA, and qAAt given in the text. In arriving at (A19) we have invoked equation (3.16). 
If one calculates ( a i  a h , )  to order g2 using equation (A12) one finds the sum involving 

the correlation function exactly cancels the last two sums in equation (A20) and one is 
left with a very familiar result (3.17). 
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